Personalized and Context-Aware TV Program Recommendations Based on Implicit Feedback
نویسندگان
چکیده
The current explosion of the number of available channels is making the choice of the program to watch an experience more and more difficult for TV viewers. Such a huge amount obliges the users to spend a lot of time in consulting TV guides and reading synopsis, with a heavy risk of even missing what really would have interested them. In this paper we confront this problem by developing a recommender system for TV programs. Recommender systems have been widely studied in the video-on-demand field, but the TV domain poses its own challenges which make the traditional video-on-demand techniques not suitable. In more detail, we propose recommendation algorithms relying exclusively on implicit feedback and leveraging context information. An extensive evaluation on a real TV dataset proves the effectiveness of our approach, and in particular the importance of the context in providing TV program recommendations.
منابع مشابه
TV Scout: Guiding Users from Printed TV Program Guides to Personalized TV Recommendation
In this paper, we present TV Scout, a recommendation system providing users with personalized TV schedules. The TV Scout architecture addresses the “cold-start” problem of information filtering systems, i.e. that filtering systems have to gather information about the user’s interests before they can compute personalized recommendations. Traditionally, gathering this information involves upfront...
متن کاملTV Scout: Lowering the Entry Barrier to Personalized TV Program Recommendation
In this paper, we present TV Scout, a recommendation system providing users with personalized TV schedules. The TV Scout architecture addresses the “cold-start” problem of information filtering systems, i.e. that filtering systems have to gather information about the user’s interests before they can compute personalized recommendations. Traditionally, gathering this information involves upfront...
متن کاملPersonalized TV Program Recommendation in VOD Service Platform Using Collaborative Filtering
Collaborative filtering(CF) for the personalized recommendation is a successful and popular method in recommender systems. But the mainly researched and implemented cases focus on dealing with independent items with explicit feedback by users. For the domain of TV program recommendation in VOD service platform, we need to consider the unique characteristic and constraints of the domain. In this...
متن کاملMusic Recommendations based on Implicit Feedback and Social Circles: The Last FM Data Set
The goal of recommender systems is to make personalized product recommendations based on users taste. In this paper we perform an exploratory analysis on the LastFM data set. Based on the data set properties we use collaborative filtering , latent factor models and propose community detection using clique percolation to give personalized artist recommendations to the user. We circumvent the imp...
متن کاملA Personalized and Context-Aware News Offer for Mobile Devices
For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015